Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil.

2013 
The bacterial strain CC-5, isolated from contaminated soil and identified as Catellibacterium sp. based on morphology and partial 16S rDNA gene sequence analysis, utilized cypermethrin as its sole carbon source and degraded 97% of 100 mg·L−1 cypermethrin within 7 days. The optimal degradation conditions were determined to be 30 °C and pH 7.0. Degradation was found to follow a first-order model at initial cypermethrin concentrations below 400 mg·L−1. Strain CC-5 suffered substrate inhibition at high cypermethrin concentrations, and the biodegradation kinetics were successfully described by the Haldane model, with a maximal specific degradation rate of 1.36 day−1, an inhibition constant of 164.61 mg·L−1, and a half-saturation constant of 101.12 mg·L−1. Inoculating cypermethrin-treated soil samples with strain CC-5 resulted in a higher rate of cypermethrin removal than that in noninoculated soil, regardless of whether the soil had previously been sterilized. These results reveal that the bacterial strain may...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    20
    Citations
    NaN
    KQI
    []