The unsteady Kutta condition on an airfoil in a surging flow

2020 
This work presents an experimental validation study of Isaacs’ incompressible unsteady-airfoil theory at Reynolds numbers above $10^{6}$ , and explores the validity of the classical Kutta condition applied to surging flows. Harmonic variation of the free-stream velocity was produced by rotating choke vanes in an unsteady transonic wind tunnel, with time-resolved lift coefficients determined from surface pressure measurements on a NACA 0018 airfoil. Unsteady lift results demonstrate the same trends with reduced frequency and velocity amplitude ratio that are predicted by Isaacs’ theory. However, significant deviations of the lift magnitude and phase angle are observed. In order to understand the cause of these deviations, the background-oriented schlieren technique was used to visualize density gradients in the immediate vicinity of the airfoil trailing edge. The time-resolved background-oriented schlieren displacement field indicates oscillatory behaviour of the trailing-edge stagnation streakline, which violates the classical Kutta condition for this unsteady surging flow.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []