Augmenting High-Performance Mobile Cloud Computations for Big Data in AMBER

2018 
Big data is an inspirational area of research that involves best practices used in the industry and academia. Challenging and complex systems are the core requirements for the data collation and analysis of big data. Data analysis approaches and algorithms development are the necessary and essential components of the big data analytics. Big data and high-performance computing emergent nature help to solve complex and challenging problems. High-Performance Mobile Cloud Computing (HPMCC) technology contributes to the execution of the intensive computational application at any location independently on laptops using virtual machines. HPMCC technique enables executing computationally extreme scientific tasks on a cloud comprising laptops. Assisted Model Building with Energy Refinement (AMBER) with the force fields calculations for molecular dynamics is a computationally hungry task that requires high and computational hardware resources for execution. The core objective of the study is to deliver and provide researchers with a mobile cloud of laptops capable of doing the heavy processing. An innovative execution of AMBER with force field empirical formula using Message Passing Interface (MPI) infrastructure on HPMCC is proposed. It is homogeneous mobile cloud platform comprising a laptop and virtual machines as processors nodes along with dynamic parallelism. Some processes can be executed to distribute and run the task among the various computational nodes. This task-based and data-based parallelism is achieved in proposed solution by using a Message Passing Interface. Trace-based results and graphs will present the significance of the proposed method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    2
    Citations
    NaN
    KQI
    []