Three-dimensional MEMS photonic cross-connect switch design and performance
2003
Photonic cross-connects (PXC) play a key role in all-optical transparent networks. In this paper, the optical design and modeling of a three-dimensional microelectromechanical system (3-D MEMS) based optical switch are discussed. Basic design rules and considerations are reviewed and used to determine the optimum configuration for free-space optical switches with more than 300 ports. The optical performance of a 256 /spl times/ 256 PXC system, including a 347 /spl times/ 347 nonblocking core switch and auxiliary 2 /spl times/ 2 optical switches for 1:1 protection and optical taps for power monitoring, is presented. The core switch has 1.4-dB median insertion loss, 1.5-dB wavelength dependent loss across a broadband of 1260-1625 nm, and a typical polarization dependent loss of 0.1 dB. Environmental tests including temperature and vibration are described.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
12
References
80
Citations
NaN
KQI