Research on fluidic oscillators under incompressible and compressible flow conditions

2020 
One of the main advantages of fluidic oscillators is that they do not have moving parts, which brings high reliability whenever being used in real applications. To use these devices in real applications, it is necessary to evaluate their performance, since each application requires a particular injected fluid momentum and frequency. In this PhD., the performance of a given fluidic oscillator is evaluated at different Reynolds numbers via a 3D-computational fluid dynamics (CFD) analysis under incompressible and compressible flow conditions. In the first stage, the net momentum applied to the incoming jet is compared with the dynamic maximum stagnation pressure in the mixing chamber, to the dynamic output mass flow, to the dynamic feedback channels mass flow, to the pressure acting to both feedback channels outlets, and to the mixing chamber inlet jet oscillation angle. A perfect correlation between these parameters is obtained, therefore indicating the oscillation is triggered by the pressure momentum term applied to the jet at the feedback channels outlets. The stagnation pressure fluctuations appearing at the mixing chamber inclined walls are responsible for the pressure momentum term acting at the feedback channels outlets, thus it is proved that the oscillations are pressure-driven. In the second stage, several performance parameters were numerically evaluated as a function of different internal modifications via using 3D-CFD simulations. The evaluation is based on studying the output mass flow frequency and amplitude whenever several internal geometry parameters are modified. The geometry modifications considered were the mixing chamber inlet and outlet widths, and the mixing chamber inlet and outlet wall inclination angles. The concept behind this is, to evaluate how much the fluidic oscillator internal dimensions affect the device's main characteristics, and to analyze which parts of the oscillator produce a higher impact on the fluidic oscillator output characteristics. For the different internal modifications, evaluated, special care is taken in studying the forces required to flip the jet. The entire study is performed for three different Reynolds numbers, 8711, 16034 and 32068. Among the conclusions reached it is to be highlighted that, for a given Reynolds number, modifying the internal shape affects the oscillation frequencies and amplitudes. Any oscillator internal modification generates a much relevant effect as Reynolds number increases. Under all conditions studied, it was observed that the fluidic oscillator is pressure-driven under incompressible flow conditions as discussed in the first and second stages. In the third stage, the feedback channel effect on the oscillator output mass flow frequency and amplitude under compressible flow conditions were evaluated. In order to bring light to this point, a set of three dimensional Direct Numerical Simulations under compressible flow conditions, are introduced in the present stage, four different feedback channel lengths and two inlet fluid velocities are considered. From the results obtained, it was observed that as the inlet velocity increases, the fluidic oscillator output mass flow frequency and amplitude increase. An increase of the feedback channel length decreases the output mass flow oscillating frequency. At high feedback channel lengths, the form of the main oscillation tends to disappear, the jet inside the mixing chamber simply actuates at high frequencies, for these cases, the mass flow and pressure signals are very scattered due to the pressure waves appearing on mixing chamber converging surfaces and both feedback channels at the same time. Once the FC length exceeds a certain threshold, the oscillation stops. Under compressible conditions, the oscillations are pressure-driven as previously stated for the incompressible cases. The forces due to the pressure are much stronger than the mass flow flowing along the feedback channels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []