Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial

2014 
The Ignik Sikumi Gas Hydrate Exchange Field Trial was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas, and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope (ANS) during 2011 and 2012. The 2011 field program included drilling the vertical test well and performing extensive wireline logging through a thick section of gas-hydrate-bearing sand reservoirs that provided substantial new insight into the nature of ANS gas hydrate occurrences. The 2012 field program involved an extended, scientific field trial conducted within a single vertical well (“huff-and-puff” design) through three primary operational phases: 1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; 2) flowback conducted at down-hole pressures above the stability threshold for native CH4-hydrate, and 3) extended (30-days) flowback at pressures below the stability threshold of native CH4-hydrate. Ignik Sikumi represents the first field investigation of gas hydrate response to chemical injection, and the longest-duration field reservoir response experiment yet conducted. Full descriptions of the operations and data collected have been fully reported by ConocoPhillips and are available to the science community. The 2011 field program indicated the presence of freemore » water within the gas hydrate reservoir, a finding with significant implications to the design of the exchange trial – most notably the use of a mixed gas injectant. While this decision resulted in a complex chemical environment within the reservoir that greatly tests current experimental and modeling capabilities – without such a mixture, it is apparent that injection could not have been achieved. While interpretation of the field data are continuing, the primary scientific findings and implications of the program are: 1) gas hydrate destabilizing is self-limiting, dispelling any notion of the potential for uncontrolled destabilization; 2) wells must be carefully designed to enable rapid remediation of well-bore blockages that will occur during any cessation in operations; 3) appropriate gas mixes can be successfully injected into hydrate-bearing reservoirs; 4) sand production can be well-managed through standard engineering controls; 5) reservoir heat exchange during depressurization was much more favorable than expected – mitigating concerns for near-well-bore freezing and enabling consideration of more aggressive pressure reduction and; 6) CO2-CH4 exchange can be accomplished in natural reservoirs. The next steps in evaluation of exchange technology should feature multiple well applications; however such field programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    19
    Citations
    NaN
    KQI
    []