Mucus permeating thiolated self-emulsifying drug delivery systems.

2016 
Abstract Context Mucus represents a critical obstacle for self-emulsifying drug delivery systems (SEDDS) targeting the epithelial membrane site. Objective The aim of the study was the development of a novel SEDDS to overcome the mucus barrier. Materials and methods Two novel conjugates N -dodecyl-4-mercaptobutanimidamide (thiobutylamidine-dodecylamine, TBA-D) and 2-mercapto- N -octylacetamide (thioglycolicacid-octylamine, TGA-O) were synthesized, incorporated into SEDDS and analyzed for stability, cytotoxicity and physico-chemical characteristics using dynamic light scattering. Mucus interaction studies were performed using in vitro assays based on multiple particle tracking, rotational silicone tubes and rheology. Results and discussion TBA-D was synthesized using dodecylamine and iminothiolane as thiol precursor (yield = 55 ± 5%). TGA-O was obtained via crosslinking of octylamine with SATA ((2,5-dioxopyrrolidin-1-yl) 2-acetylsulfanylacetate) (yield = 70 ± 6%). The chemical structure of target compounds was confirmed via NMR analysis. The thiol-conjugates were incorporated in an amount of 3% (m/m) into SEDDS (Cremophor EL 30%, Capmul MCM 30%, Captex 355 30% and propylene glycol 10%), namely thiolated SEDDS leading to a droplet size around 50 nm and zeta potential close to 0 mV. Thiolated SEDDS with an effective diffusion coefficient 〈Deff〉 of up to 0.871 ± 0.122 cm 2  s −1  × 10 −9 were obtained. Rotational silicone studies show increased permeation of the thiolated SEDDS A in comparison with unthiolated control. Rheological studies confirmed the mucolytic activity of the thiol-conjugates which differed only by 3% from DTT (dithiothreitol) serving as positive control. Conclusion Low molecular weight thiol-conjugates were identified to improve the mucus permeation, leading to highly efficient mucus permeating SEDDS, which were superior to conventional SEDDS and might thus be a new carrier for lipophilic drug delivery.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    31
    Citations
    NaN
    KQI
    []