Three-dimensional Texture Analysis of Renal Cell Carcinoma Cell Nuclei for Computerized Automatic Grading

2010 
The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we analyzed the three-dimensional chromatin texture of cell nuclei based on digital image cytometry. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray level co-occurrence matrices and 3D run length matrices. Finally, to demonstrate the suitability of 3D texture features for classification, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    16
    Citations
    NaN
    KQI
    []