Non-Markovian out-of-equilibrium dynamics: A general numerical procedure to construct time-dependent memory kernels for coarse-grained observables

2019 
We present a numerical method to compute non-equilibrium memory kernels based on experimental data or molecular dynamics simulations. The procedure uses a recasting of the non-stationary generalized Langevin equation, in which we expand the memory kernel in a series that can be reconstructed iteratively. Each term in the series can be computed based solely on knowledge of the two-time auto-correlation function of the observable of interest. As a proof of principle, we apply the method to crystallization from a super-cooled Lennard Jones melt. We analyze the nucleation and growth dynamics of crystallites and observe that the memory kernel has a time extent that is about one order of magnitude larger than the typical timescale needed for a particle to be attached to the crystallite in the growth regime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []