Quadratic Hilbert Transform Demodulation Based on Time-Delayed Correlation Treatment and EEMD

2013 
To deal with the demodulation problem of rolling bearing defect vibration signal in heavy noise, a new method based on time-delayed correlation algorithm and ensemble empirical mode decomposition (EEMD) is presented. Introduced the time-delayed autocorrelation de-noising principle. After the discretization and unbiased estimation of the original signals autocorrelation function , de-noising pretreatment is implemented by appending a rectangle window. Then an envelope signal can be obtained by the first Hilbert transform. After the EEMD decomposition, some interested intrinsic mode functions (IMFs) can be collected. By making the second Hilbert transform of the IMFs, we can get the local Hilbert marginal spectrum from which the defects in a rolling bearing can be identified. By repeated analysis of simulation signals and actual rolling bearings defect vibration signal, the results show that the proposed method is more effective than direct modulation or only time-delayed correlation demodulation or combine time-delayed correlation with EMD demodulation in de-noising and diagnosing the rolling bearing's defect information.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    1
    Citations
    NaN
    KQI
    []