Stepwise functionalization of SiNx surfaces for covalent immobilization of antibodies

2009 
Abstract A stepwise functionalization of silicon nitride surfaces is followed by X-ray photoelectron spectroscopy (XPS). The first step involves a silanization reaction leading to the formation of a silane film with a thickness estimated by XPS of one or two molecular layers. A monoprotected homobifunctionalized linker is then used to avoid the formation of bridge structures on the surface. The linker reacts quantitatively with the amino groups of the surface as outlined by the absence of residual unreacted CNH 2 /CNH 3 + groups in XPS analyses. Deprotection of the ester groups of the immobilized linker and subsequent reaction with N -hydroxysuccinimid lead to N -hydroxysuccinimid activated surfaces able to react with biological species. These surfaces were then incubated with anti-transferrin antibodies. As seen by XPS and atomic force microscopy analyses, the concentration and incubation conditions of antibodies are important to obtain a compact layer of antibodies on the surface. All chemical steps of the procedure are compatible with microelectronic process on silicon. Moreover, antibodies introduced under native conditions at physiological pH, in the last step of the immobilization process, recognized specifically antigens, as shown by fluorescence competitive assay.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    14
    Citations
    NaN
    KQI
    []