Transplant Drugs against SARS, MERS and COVID-19

2020 
There is an urgent need to develop drugs and vaccines to counteract the effects of the new coronavirus SARS-CoV-2 and adequately treat the corona virus disease (COVID-19). As these drugs are still under investigation, research also focuses on existing medication with proven effectiveness in other coronaviral diseases. The advantages of existing therapeutic drugs that are currently approved (for other indications) are the known safety profile, general availability and relatively lower costs involved in extending the purpose to a new disease. Calcineurin inhibitors (CNI) are drugs that have shown effectiveness in several coronaviral diseases, and are well-known and widely used drugs in transplant medicine. The aim of this narrative review is to present the current evidence of CNI in coronaviral diseases, the biophysiology of CNI and to suggest possible ways to study CNI as a new treatment option for COVID-19. We searched original papers, observational studies, case reports, and meta-analyses published between 2000 and 2020 in English in the PubMed database and Google Scholar using the keywords: (coronavirus), (treatment), (MERS), (SARS), (COVID-19), (tacrolimus), (ciclosporin), (cyclosporin) AND (calcineurin inhibitor). We excluded studies in patients with clear indications for immunosuppressive therapy. Additionally, we searched in the preprint servers and the World Health Organization bulletin. Ten studies were identified and included. Calcineurin inhibitor therapy has been suggested to be effective for coronaviral diseases in different settings. The results are summarized in a table. CNI should be investigated as a first treatment option based on evidence of direct antiviral effects and its properties preventing severe systemic hyperinflammation, as has been observed in COVID-19 with predominantly pulmonary immunopathological changes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    2
    Citations
    NaN
    KQI
    []