Consequences of the arms race between Maculinea teleius social parasite and Myrmica host ants for myrmecophilous butterfly conservation

2016 
The arms race between Maculinea butterflies and Myrmica host ants leads to local host-parasite adaptations. In our study, we assessed whether sympatric and allopatric Myrmica scabrinodis populations exhibit behavioural differences towards Maculinea teleius larvae during the adoption-period when butterfly larvae need to be taken inside the Myrmica nest. The second aim was to assess the butterfly survival rate inside ant colonies from different populations. We used one sympatric host population and three allopatric populations: one infested by M. teleius and two uninfested populations. We found that ants from the sympatric population showed a higher number of positive behaviours toward M. teleius larvae during adoption than ants from the allopatric populations. There were no differences in the number of inspection or negative behaviour events. The survival of butterfly larvae was highest inside sympatric host colonies and differed from the survival of M. teleius reared by ants from the allopatric, uninfested populations. No difference was found for the survival rate of M. teleius raised by infested, allopatric host colonies compared to sympatric host populations. Our results suggest the lack of behavioural counter-adaptations of local hosts of M. teleius that more easily adopt and rear butterfly caterpillars compared to naive M. scabrinodis colonies. Our results may also have implications for Maculinea butterfly conservation, especially for reintroduction programmes. We suggest that the existence of behavioural host defences should be checked for the source host population, as well as for the Myrmica population from the reintroduction site. It may also be reasonable to introduce several Myrmica host colonies from the source butterfly host population.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []