Fiber-IntegratedReversibly Wavelength-Tunable NanowireLaser Based on Nanocavity Mode Coupling

2019 
As an ideal miniaturized light source, wavelength-tunable nanolasers capable of emitting a wide spectrum stimulate intense interests for on-chip optoelectronics, optical communications, and spectroscopy. However, realization of such devices remains a major challenge because of extreme difficulties in achieving continuously reversibly tunable gain media and high quality (Q)-factor resonators on the nanoscale simultaneously. Here, exploiting single bandgap-graded CdSSe NWs and a Fabry–Perot/whispering gallery mode (FP/WGM) coupling cavity, a free-standing fiber-integrated reversibly wavelength-tunable nanolaser covering a 42 nm wide spectrum at room temperature with high stability and reproducibility is demonstrated. In addition, a 1.13 nm tuning spectral resolution is realized. The substrate-free device design enables integration in optical fiber communications and information. With reversible and wide, continuous tunability of emission color and precise control per step, our work demonstrates a general ap...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    5
    Citations
    NaN
    KQI
    []