Optimization of strontium- doping concentration in BaTiO3 nanostructures for room temperature NH3 and NO2 gas sensing

2020 
Abstract In this study, we comprehensively present the gas sensing performance of strontium (Sr)-doped barium titanate (BaTiO3) nanostructures which are synthesized by a low-temperature hydrothermal route. The in-situ doping of strontium in BaTiO3 nanostructures is achieved with different molar concentrations of Sr, and the sensing performance was evaluated by screen printing process of products to form their thick films. The thick films of as-prepared Sr-doped BaTiO3 (BaSrTiO3) were investigated for gas sensing performance for various gases at different operating temperatures where strong response was observed for both nitrogen dioxide (NO2) and ammonia (NH3) gases at room temperature. Furthermore, the sensing response at room temperature for NH3 and NO2 gases was also studied with respect to Sr doping concentrations in BaTiO3 nanostructures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    9
    Citations
    NaN
    KQI
    []