Preparation of sorbents derived from bamboo and bromine flame retardant for elemental mercury removal

2020 
Abstract This work showcases cost-effective elemental mercury capture strategy enabled by bamboo saw dust and bromine flame retardant (BFR) derived sorbent prepared by a novel hydrothermal-pyrolysis method. The hydrothermal treatment of bamboo and BFR blend was conducted in subcritical water resulting in a hydrothermal char. Subsequently, the hydrothermal char was pyrolyzed in nitrogen atmosphere leading to an improved pore architecture. The resulting biomaterials were proven highly effective for Hg removal. A thorough analysis of the physicochemical properties of the samples was conducted by means of BET, SEM, XRD, XPS and FT-IR. Key parameters such as bamboo/BFR ratio, hydrothermal temperatures and pyrolysis temperatures influence Hg0 removal capacity of our bio-sorbents. Overall, the optimal bamboo/BFR ratio, hydrothermal temperature and pyrolysis temperature are 2:1, 320 °C and 800 °C, respectively. Under these optimized conditions, a very promising elemental mercury removal efficiency of 99% is attained. The kinetics and mechanism of Hg0 removal are also proposed. The experimental data fit well with a pseudo-second-order model, indicating that Hg0 adsorption over sorbents was dominated by chemisorption. Our results indicate that the C–Br groups in sorbents provide active sites for oxidizing Hg0 into HgBr2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []