Pressure suppression of unconventional charge-density-wave state in PrRu4P12 studied by optical conductivity

2012 
Optical conductivity [{delta}({omega})] of PrRu{sub 4}P{sub 12} has been studied under high pressure to 14 GPa, at low temperatures to 8 K, and at photon energies 12 meV-1.1 eV. The energy gap in {delta}({omega}) at ambient pressure, caused by a metal-insulator transition due to an unconventional charge-density-wave formation at 63 K, is gradually filled in with increasing pressure to 10 GPa. At 14 GPa and below 30 K, {delta}({omega}) exhibits a pronounced Drude-type component due to free carriers. This indicates that the initial insulating ground state at zero pressure has been turned into a metallic one at 14 GPa. This is consistent with a previous resistivity study under pressure, where the resistivity rapidly decreased with cooling below 30 K at 14 GPa. The evolution of electronic structure with pressure is discussed in terms of the hybridization between the 4f and conduction electrons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    5
    Citations
    NaN
    KQI
    []