Sodium diffusion in ionic liquid-based electrolytes for Na-ion batteries: the effect of polarizable force fields

2020 
Understanding the transport of sodium ion in ionic liquids is key to design novel electrolyte materials for sodium-ion batteries. In this work, we combine molecular dynamics simulation and experiments to study how molecular interactions and local ordering affect relevant physico-chemical properties. Ionic transport and local solvation environments are investigated in electrolytes composed of sodium bis(fluorosulfonyl)imide, (Na[FSI], in N,N-methylpropylpyrrolidinium bis(fluorosulfonyl)imide, [C3C1pyr][FSI], at different salt concentrations. The electrolyte systems are modelled by means of molecular dynamic simulations using a polarizable force field. We show that including polarization effects explicitly in the molecular simulations is required in order to attain a reliable description of the transport properties of sodium in the [C3C1pyr][FSI] electrolyte. Validation of the computational results by comparison to experimental data allows to assess the suitability of polarizable force fields in describing and interpreting the structure and the dynamics of the sodium salt-ionic liquid system, which is essential to enable the application of IL-based electrolytes in novel energy-storage technologies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []