GENERALIZED INTEGRATION OPERATORS BETWEEN BLOCH-TYPE SPACES AND $F(p,q,s)$ SPACES

2013 
Let $H(\mathbb{D})$ denote the space of all holomorphic functions on the unit disk $\mathbb{D}$ of $\mathbb{C}$. Let $\varphi$ be a holomorphic self-map of $\mathbb{D}$, $n$ be a positive integer and $g\in H(\mathbb{D})$. In this paper, we investigate the boundedness and compactness of a generalized integration operator $$ I^{(n)}_{g,\varphi}f(z)=\int^z_0f^{(n)}(\varphi(\zeta))g(\zeta)d\zeta,\ \ z\in\mathbb{D}, $$ between Bloch-type spaces and $F(p,q,s)$ spaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    6
    Citations
    NaN
    KQI
    []