Suppression of noise of soliton pulses using a polarization-imbalanced nonlinear loop mirror

2017 
The generation of clean solitons is important for a number of applications such as optical analog-to-digital conversion (ADC) based on soliton self-frequency shift. In real sources the quality of the pulses is deteriorated by dispersive waves, continuous wave (CW), amplified spontaneous emission (ASE). The dispersive waves appear in the spectral profile as side-lobe components that would limit the resolution of ADC. Spectral compression techniques cause the appearance of a pedestal on the spectrum. All of these imperfections of pulses have to be eliminated to improve the performance of alloptical systems. The nonlinear optical loop mirror (NOLM) is a good candidate for these tasks. In the present work we report the implementation of a polarization-imbalanced NOLM for soliton cleaning. The NOLM consists of a nearly symmetrical coupler with a 51/49 coupling ratio, 100 m of twisted OFS Truewave fiber whose dispersion value is 9 ps/nm/km at 1550 nm, and a tunable in-line fiber polarization controller (PC) asymmetrically inserted inside the loop. The use of the nearly symmetrical coupler allows very low transmission for low power components of radiation. At the same time adjustment of the PC allows the adjustment of the nonlinear characteristic to have a maximum transmission for solitons with different durations. We used two sources of pulses, SESAM based and a ring fiber laser. At the appropriate adjustment of PC, we obtained a rejection of ASE by 220 times, rejection of the dispersion waves and the pedestal by more than 200 times. The maximum transmission reached 70%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    1
    Citations
    NaN
    KQI
    []