Human immunodeficiency virus type 1 Tat protein modulates cell cycle and apoptosis in Epstein–Barr virus-immortalized B cells

2004 
Abstract Patients infected with human immunodeficiency virus type 1 (HIV-1) develop a spectrum of B cell lymphoproliferative disorders ranging from polyclonal B cell activation to B cell lymphomas. While a direct role of Epstein–Barr virus (EBV) is well recognized for most of these lesions, recent findings have suggested that transactivator HIV-1 Tat protein might be involved in the pathogenesis of B cell lymphomas. Tat-expressing EBV-positive B cells were generated by transduction with a retroviral Tat-encoding vector. B(Tat+) cells expressed lower levels of anti-apoptotic protein Bcl-2 than parental and control B(Tat−) cells, generated by transduction with an empty retroviral vector, and were more prone to apoptosis upon serum withdrawal, as assessed by analysis of annexin V-stained cells and cleavage of poly-ADP-ribose-polymerase by caspase 3. Nevertheless, in serum starvation, B(Tat−) cells mainly exhibited the Rb hypo-phosphorylated form, underwent cell cycle arrest, and grew in single cell suspension, while B(Tat+) cells displayed the Rb hyper-phoshorylated form, progressed throughout the cell cycle, and retained the ability to grow in small clumps. Finding that B(Tat+) cells maintained proliferative capacity upon serum withdrawal suggests that cells expressing Tat have growth advantages among the EBV-driven cell proliferations and may originate B cell clones with more oncogenic potential.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    24
    Citations
    NaN
    KQI
    []