The control algorithm improving performance of electric load simulator

2017 
In order to improve dynamic performance and signal tracking accuracy of electric load simulator, the influence of the moment of inertia, stiffness, friction, gaps and other factors on the system performance were analyzed on the basis of researching the working principle of load simulator in this paper. The PID controller based on Wavelet Neural Network was used to achieve the friction nonlinear compensation, while the gap inverse model was used to compensate the gap nonlinear. The compensation results were simulated by MATLAB software. It was shown that the follow-up performance of sine response curve of the system became better after compensating, the track error was significantly reduced, the accuracy was improved greatly and the system dynamic performance was improved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    3
    Citations
    NaN
    KQI
    []