Adaptive optics for multifocal plane microscopy

2020 
Multifocal plane microscopy (MUM) allows three dimensional objects to be imaged in a single camera frame. Our approach uses dual orthogonal diffraction phase gratings with a quadratic distortion of the lines to apply defocus to the first diffraction orders which, when paired with a relay lens, allows for 9 focal planes to be imaged on a single camera chip. This approach requires a strong signal level to ensure sufficient intensity in the diffracted light, but has the advantage of being compact and straightforward to implement. As the microscope begins to focus deeper into the sample, aberrations caused by refractive index mismatch and inhomogeneity in the sample's media have an adverse effect on the signal's quality. In this paper, we investigate the image quality improvement brought by applying adaptive optics (AO) to multifocal plane microscopy. A single correction device (an 8x8 deformable mirror (DM)) is combined with an image-based AO control strategy to perform the correction of optical aberrations. We compare full end-to-end modelling results using an established numerical modelling system adapted for microscopy to laboratory results both on a test sample and on a number of biological samples. Finally, we will demonstrate that combining AO and MUM, we are able to improve the image quality of biological samples and provide a good correction throughout the volume of the biological sample.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []