High-temperature electrical and thermal transport properties of polycrystalline PdCoO 2

2021 
The layered delafossite ${\mathrm{PdCoO}}_{2}$ has been predicted to be one of very few materials with a thermopower that is highly anisotropic and switches sign between different crystallographic directions. These properties are of interest for various applications, but have been difficult to verify because sufficiently large crystals have not been available. We report measurements of the high-temperature electrical resistivity, thermal conductivity, and thermopower of phase-pure ${\mathrm{PdCoO}}_{2}$ powder compacts prepared by a highly Pd-efficient synthesis route. While the electronic transport of the polycrystalline samples is dominated by that of the Pd planes, the thermopower exhibits a well-defined deviation from the in-plane character at temperatures above $600\phantom{\rule{4pt}{0ex}}\mathrm{K}$, which is indicative of opposing trends in the Seebeck coefficients within and perpendicular to the delafossite layers. The experimental data are consistently described by a combination of effective-medium models based on the main axes transport quantities. The results support the predicted ambipolar thermopower anisotropy in ${\mathrm{PdCoO}}_{2}$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    1
    Citations
    NaN
    KQI
    []