Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton

2019 
Abstract The traditional fluorinated porous material with super-hydrophobicity and super-oleophilicity is an effective strategy for oil-water separation. However, in recent years, fluorinated materials have been classified as “Emerging Environmental Pollutants” by U. S. Environmental Protection Agency because of difficult degradation and bio-accumulation. It is unacceptable to introduce new pollutants while solving environmental disasters. Therefore, it is great requirement to explore a low-cost, environmentally friendly, and renewable technique for the fabrication of novel porous materials with super-hydrophobicity and super-oleophilicity to separate oil-water mixtures. In this work, renewable beeswax, lignin, and cotton have been chosen to prepare the biomass-based porous materials with super-hydrophobicity and super-oleophilicity for oil-water separation. The mixture of beeswax and lignin is modified on the surface of cotton to obtain the biomass-based porous materials with super-hydrophobicity and super-oleophilicity. The beeswax and lignin provide low surface energy and micro/nanoscale structures, respectively. The introduction of lignin effectively improves the thermal stability of the porous materials. The apparent contact angle still remains to be above 150° after a long-time heating. The porous materials effectively separate oil-water mixtures and have good absorption effect for heavy oil (density greater than water). Moreover, the porous materials are easily recyclable after reactivation. This strategy of preparing oil-water separation materials from renewable natural polymers not only helps to clean the environment, but also helps to recover valuable oil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    22
    Citations
    NaN
    KQI
    []