Precise Patterning of Large‐Scale TFT Arrays Based on Solution‐Processed Oxide Semiconductors: A Comparative Study of Additive and Subtractive Approaches

2018 
Precise patterning of solution-processed oxide semiconductors is critical for cost-effective, large-scale, and high throughput fabrication of circuits and display application. In this paper, demonstration and comparison are made using the additive and subtractive patterning strategies to precisely fabricate wafer-scale thin film transistor arrays (1600 devices), which are based on high-quality solution-processed indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO). The IZO and IGZO TFTs exhibit field-effect mobility up to 8.0 and 5.2 cm2 V−1 s−1 when using the additive method, whereas the highest mobility of 24.2 and 13.7 cm2 V−1 s−1 for IZO and IGZO TFTs is achieved when using the subtractive method. The X-ray photoelectronic spectroscopy studies and quantitative 2D device simulations together reveal that good device performance is attributed to moderate shallow donor-like states (providing electrons) from oxygen vacancy and few accepter-like states (trapping electrons) resulted from the dense structural framework of MO bonds. After examining the uniformity and reliability of the devices, the solution-patterned inverters are demonstrated using negative-channel metal oxide semiconductors, which show full swing output transfer characteristics and thus provide a promising method for solution-based fabrications of circuits.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    17
    Citations
    NaN
    KQI
    []