Snowmelt runoff and groundwater discharge in Himalayan rivers: a case study of the Satluj River, NW India

2018 
The Himalayas are one of the largest cryospheric systems outside the Polar Regions, and include more than 12,000 glaciers spread over an area of about 33,000 km2. The Himalayan glaciers and snow packs retreating at an accelerating rate, thereby creating an alarming situation for the huge population that resides in northwestern India and southeastern Pakistan, as they depend on surface water resources in the region and rivers emanating from the Himalayas. This work attempts to quantify the contribution of different sources such as glacial/ice/snow melt and groundwater discharge to the Satluj River using the stable isotopes based hydrograph separation method at Ropar (foot hill) and Yusufpur in plain of Punjab, India. A mass balance model of three-component mixing has been engaged using the values of δ18O and electrical conductivity of the river water, and its discharge fraction, to estimate the time-varying relative proportion of each component from July 2013 to January 2014. The proportion of glacier melt was found to peak up to ~ 64% at Ropar and ~ 15% at Yusufpur during the wet summer months. The fraction of groundwater discharge was found to vary between 10–20% at Ropar and 25–35% at Yusufpur (Punjab plain) over time. The observed trend of d-excess (deuterium excess) values of river water also suggests that the glaciers and snow packs at higher altitudes contain a significant fraction of snow derived from vapor originating in the Mediterranean region, driven by the mid-latitude westerlies known as western disturbances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    9
    Citations
    NaN
    KQI
    []