Analysis on Degradation in Creep Strength of 9Cr-W Martensitic Steel

2021 
In order to clarify the creep mechanism of high Cr martensitic steel, creep curves of 9Cr-1W and 9Cr-4W steels were analyzed applying an exponential law to the temperature, stress, and time parameters. The activation energy, Q, the activation volume, V, and the Larson-Miller constant, C, are obtained as functions of creep strain. At the beginning of creep, sub-grain boundary strengthening by swept dislocations out of sub-grains occurs followed by strengthening due to the rearrangement of M23C6 and the precipitation of Laves phase. After Q reaches a peak, heterogeneous recovery and subsequent heterogeneous deformation begin at an early stage of transient creep in the vicinity of some weakest boundaries due to coarsening of the precipitates, which triggers the unexpected degradation in strength due to the accelerating coarsening of precipitates. Stabilizing not only M23C6 but also Laves phase is important to mitigate the degradation of rupture strength of martensitic steel. The above creep mechanism for martensitic steel can be applicable to the explanation for the degradation in long term rupture strength of high Cr martensitic steel, Grades 91 and 92.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []