Robust Molybdenum Diselenide Ambipolar Transistors with Fluoropolymer Interfacial Layer and Their Application to Complementary Inverter Circuits
2021
Abstract Recently, two-dimensional (2D) transition-metal dichalcogenides (TMDs) have been extensively studied as promising semiconducting materials for complementary metal–oxide semiconductor (CMOS) technology because their family includes p- and n-type semiconductors with excellent electrical properties. However, systematic stability tests and robustness enhancement methods for TMD field-effect transistors (FETs) for implementing high-reliability 2D-material CMOS technology have not been reported. Herein, we report MoSe2 FETs with well-balanced ambipolar charge-transport properties and high stability arising from the p-type doping effect and the minimization of charge trapping, which were due to the insertion of a fluoropolymer (Cytop) interfacial layer at the MoSe2/SiO2 interface. Ambipolar MoSe2 FETs with a Cytop interfacial layer are systematically examined via harsh stress tests to evaluate their stability. Additionally, we demonstrate a 2D-material CMOS inverter based on ambipolar MoSe2 FETs with Cytop, which exhibits high performance and excellent stability, such as a full logic swing and robust retention characteristics without degradation for 5,000 cycles. This study suggests a novel strategy for developing 2D-material CMOS circuits with high performance and stability.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
51
References
3
Citations
NaN
KQI