Chirality study inside biological tissue by second harmonic generation circular dichroism

2013 
Many biological systems are composed of chiral molecules and their functions depend strongly on their chirality. For example, most amino acids are of left-handed chirality while most polysaccharides are of right-handed chirality. Both of them are vital for human life, so it is important to perform chiral detection inside bio-tissues. Here we demonstrated second harmonic generation circular dichroism (SHG-CD) as a novel chiral imaging contrast in thick biotissue. Compared with conventional chiral detection, SHG-CD provides at least three orders higher contrast. In addition, due to the nonlinear nature of SHG, this technique provides optical sectioning capability, so the axial contrast is much better. The advantages of nonlinear optical microscopy are optical sectioning and deep penetration capabilities. The SHG-CD achieved 100% signal contrast with sub-micrometer spatial resolution. This method is expected to offer a novel contrast mechanism of imaging chirality inside complex bio-tissues.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []