A new electro-mechanical bioreactor for soft tissue engineering

2008 
By enabling the maintenance of controlled chemical and physical environmental conditions, bioreactors proved that electro-mechanical stimulation improves tissue development in vitro, especially in the case of tissues which are subjected to stimuli during embryogenesis and growth (ie skeletal and cardiac muscle tissue). However, most of the bioreactors developed in the last 20 yrs, designed to suit specific applications, lack versatility. With the aim to provide researchers with a yielding, versatile tool, we designed and realized in this study an electro-mechanical stimulator capable of dynamically culturing four biological constructs, delivering assignable stretching and electrical stimulation patterns. The device has been conceived to be easy to handle and customizable for different applications, while ensuring sterility along with stimuli delivery. The gripping equipment, modular and adaptable to scaffolds of different consistencies, is provided with dedicated tools for supporting sample insertion into the culture chamber performed under a laminar flow hood. As to performance, a wide range of electro-mechanical stimulation patterns and their relative occurrence can be accomplished, permitting the adjustment of the dynamic culture parameters both to the specific cell species and to the developmental phase of the cultured cells. (Journal of Applied Biomaterials & Biomechanics
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    17
    Citations
    NaN
    KQI
    []