Approaching the ultimate superconducting properties of (Ba,K)Fe2As2 by naturally formed low-angle grain boundary networks.

2021 
The most effective way to enhance the dissipation-free supercurrent in presence of magnetic field for type II superconductors is the introduction of defects that acts as artificial pinning centres (APCs) for the vortices. For instance, the in-field critical current density of doped BaFe2As2 (Ba122), one of the most technologically important Fe-based superconductors, has been improved over the last decade by APCs created by ion-irradiation. The technique of ion-irradiation has been commonly implemented to determine the ultimate superconducting properties. However, this method is rather complicated and expensive. Here, we report on a surprisingly high critical current density and strong pinning efficiency close to the crystallographic c-axis for a K-doped Ba122 epitaxial thin film without APCs, achieving performance comparable to ion-irradiated K-doped Ba122 single crystals. Microstructural analysis reveals that the film is composed of columnar grains having width around 30-60 nm. The grains are rotated around the b- (or a-) axis by 1.5 degree and around the c-axis by -1 degree, resulting in the formation of low-angle grain boundary networks. This study demonstrates that the upper limit of in-field properties reached in ion-irradiated K-doped Ba122 is achievable by grain boundary engineering, which is a simple and industrially scalable manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []