Correlation Analysis of Macroscopic and Microscopic Parameters of Coal Measure Soil Based on Discrete Element Method

2019 
Numerical simulation of the triaxial test of coal measure expansive soil distributed along the highways in Pingxiang District, Jiangxi, was carried out by means of discrete particle flow, during which the macromechanical properties and the formation and developmental patterns of shear displacement field of the coal measure expansive soil were studied from a mesoscopic perspective. The result showed that the macroscopic stress and strain of test specimens can be significantly influenced by the interparticle friction coefficient of the coal measure expansive soil. Peak value of the deviatoric stress of test specimens increased with increasing friction coefficient, and before reaching the deviatoric stress peak value, the stress-strain relationship of the soil body basically presented a linear variation trend; the soil interparticle contact stiffness varied hyperbolically with the deviatoric stress peak value of test specimens, and the increasing contact stiffness ratio led to a gradual decrease of the deviatoric stress peak value but had only a small impact on the residual strength of test specimens; confining pressure was found to have remarkable influence on both the deviatoric stress peak value and the residual strength of test specimens; when the experimental confining pressure increased from 0.2 MPa to 1.2 MPa, the deviatoric stress peak value and the residual strength of test specimens increased by 2.14 times and 5.11 times, respectively. This paper reveals the macroinstability and failure mechanism of coal measure expansive soil from a microperspective.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []