ALD CeO2-Coated Pt anode for thin-film solid oxide fuel cells

2021 
Abstract Surface modification of electrodes for realizing high electrochemical reactivity and thermal stability is an attractive strategy for high-performance low temperature solid oxide fuel cells (LT-SOFCs). Herein, the atomic-layer-deposited (ALD) CeO2-coated Pt anode structure is fabricated and applied to anodized aluminum oxide (AAO)-based thin-film LT-SOFC. The effect of Pt anode morphology on the infiltration of ALD CeO2 is elucidated. Anode kinetics are improved in the ALD CeO2-coated porous Pt anode cell possibly due to the larger Pt–CeO2 interface density, leading to a decrease in activation resistance by 86%. The maximum power density of the cell with the ALD CeO2-coated porous Pt anode shows 478 mW/cm2; a dramatic improvement by a factor of two compared to the bare porous Pt anode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []