High energy-storage performance of lead-free Ba0.4Sr0.6TiO3–Sr0.7Bi0.2TiO3 relaxor-ferroelectric ceramics with ultrafine grain size

2021 
Abstract Relaxor-ferroelectric (RFE) ceramics possess slender ferroelectric hysteresis loop and low remnant polarization (Pr). They have great potential to provide excellent energy-storage performance as dielectric energy-storage materials. Herein, a lead-free 0.8Ba0.4Sr0.6TiO3–0.2Sr0.7Bi0.2TiO3 (0.8BST–0.2SBT) RFE ceramic with high energy-storage performance has been realized successfully. The addition of Bi3+ and increase in Sr2+content at the A site of the BST can effectively inhibit the growth of grains for high breakdown strength (Eb). As a result, an ultrafine average grain size of 0.7 μm was obtained in 0.8BST–0.2SBT RFE ceramic, affording a high Eb of 300 kV/cm. Further investigation revealed that the mutual conversion of short-range polar nanoregions and long-range-ordered ferroelectric domains upon application and withdrawal of a 300 kV/cm applied electric field resulted in a high maximum polarization (Pmax) of 31 μC/cm2 and a low Pr of 2.5 μC/cm2. Hence, the 0.8BST–0.2SBT RFE ceramic simultaneously exhibited a high recoverable energy-storage density of 3.3 J/cm3 and a high energy-storage efficiency of 85% at 300 kV/cm. Additionally, a good energy-storage performance was reported over a temperature range of 50°C-120 °C and frequency from 10 to 1000 Hz, making the 0.8BST-0.2SBT RFE ceramic a potential lead-free dielectric energy-storage material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []