Spectra distortion by the interstrip gap in spectroscopic silicon strip detectors

2012 
The NUSTAR experiments to be carried out as the part of the FAIR program (Facility for Antiproton and Ion Research) now under development in GSI, Germany, require unique spectrometers for heavy ions, for an energy range between a hundred keV up to hundreds of MeV. These spectrometers are constructed on the basis of silicon double sided detectors capable of providing simultaneously the energy spectrum of the particles and the position of hit points. The double sided Si strip detectors for high resolution ion spectroscopy and tracking were developed by the PTI-RIMST consortium. Reduced sized detectors were studied with alpha-particles from a 238Pu source to define the spectral response of their p+ side. The energy resolution was measured and found to be the highest, 9.6 keV, in the p+ strips area. The energy spectrum for the particles hit at the interstrip gap was shown to be much broader and have a maximum at the low energy edges. In this study the alpha-particle spectra were measured on the p+ side of strip detector and their shape was found to depend on the p+ strip structure and potential distribution under the strip and in the interstrip gap, where the surface is passivated by SiO2 layer. Therefore, the 2D potential distribution in the interstrip gap was simulated and interpreted through the effective entrance window for alpha-particles. The calculated spectrum of a detector from alpha-particle source has a shape specific to the experimental detector spectral response, i.e., the peak at low energies. These findings are to be taken into account in the analysis of short range particle spectra and may well contribute to further development of spectroscopic single sided and double sided Si strip detectors to be used in investigations in nuclear physics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    1
    Citations
    NaN
    KQI
    []