Evaluation of Flood Prediction Capability of the WRF-Hydro Model Based on Multiple Forcing Scenarios
2020
The Weather Research and Forecasting (WRF)-Hydro model as a physical-based, fully-distributed, multi-parameterization modeling system easy to couple with numerical weather prediction model, has potential for operational flood forecasting in the small and medium catchments (SMCs). However, this model requires many input forcings, which makes it difficult to use it for the SMCs without adequate observed forcings. The Global Land Data Assimilation System (GLDAS), the WRF outputs and the ideal forcings generated by the WRF-Hydro model can provide all forcings required in the model for these SMCs. In this study, seven forcing scenarios were designed based on the products of GLDAS, WRF and ideal forcings, as well as the observed and merged rainfalls to assess the performance of the WRF-Hydro model for flood simulation. The model was applied to the Chenhe catchment, a typical SMC located in the Midwestern China. The flood prediction capability of the WRF-Hydro model was also compared to that of widely used Xinanjiang model. The results show that the three forcing scenarios, including the GLDAS forcings with observed rainfall, the WRF forcings with observed rainfall and GLDAS forcings with GLDAS-merged rainfall, are optimal input forcings for the WRF-Hydro model. Their mean root mean square errors (RMSE) are 0.18, 0.18 and 0.17 mm/h, respectively. The performance of the WRF-Hydro model driven by these three scenarios is generally comparable to that of the Xinanjiang model (RMSE = 0.17 mm/h).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
70
References
6
Citations
NaN
KQI