Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences

2008 
The objective of this study was to map and characterize QTLs for traits related to nitrogen utilization efficiency (NUE), grain N yield, N-remobilization and post-silking N-uptake. Furthermore, to examine whether QTLs detected with recombinant inbred lines (RILs) crossed to a tester are common to those detected with line per se evaluation, both types of evaluations were developed from the same set of RILs. The material was studied over two years at high N-input, and one year at low N-input. We used 15N-labelling to evaluate with accuracy the proportion of N remobilized from stover to kernels and the proportion of postsilking N-uptake allocated to kernels. With 59 traits studied in three environments, 608 QTLs were detected. Using a method of QTL clustering, 72 clusters were identified, with few QTLs being specific to one environment or to the type of plant material (lines or testcross families). However, considering each trait separately, few QTLs were common to both line per se and testcross evaluation. This shows that genetic variability is expressed differently according to the type of progeny. Studies of coincidences among QTLs within the clusters showed an antagonism between N-remobilization and N-uptake in several QTL-clusters. QTLs for N-uptake, root system architecture and leaf greenness coincided positively in eight clusters. QTLs for remobilization mainly coincided in clusters with QTLs for leaf senescence. On the whole, sign of coincidences between QTLs underlined the role of a “stay-green” phenotype in favouring N-uptake capacity, and thus grain yield and N grain yield.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    99
    Citations
    NaN
    KQI
    []