Role of Ih in the firing pattern of mammalian cold thermoreceptor endings

2012 
Mammalian peripheral cold thermoreceptors respond to cooling of their sensory endings with an increase in firing rate and modification of their discharge pattern. We recently showed that cultured trigeminal cold-sensitive (CS) neurons express a prominent hyperpolarization-activated current (Ih), mainly carried by HCN1 channels, supporting subthreshold resonance in the soma without participating in the response to acute cooling. However, peripheral pharmacological blockade of Ih, or characterization of HCN1−/− mice, reveals a deficit in acute cold detection. Here we investigated the role of Ih in CS nerve endings, where cold sensory transduction actually takes place. Corneal CS nerve endings in mice show a rhythmic spiking activity at neutral skin temperature that switches to bursting mode when the temperature is lowered. Ih blockers ZD7288 and ivabradine alter firing patterns of CS nerve endings, lengthening interspike intervals and inducing bursts at neutral skin temperature. We characterized the CS nerv...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    28
    Citations
    NaN
    KQI
    []