Communication: Highest occupied molecular orbital–lowest unoccupied molecular orbital gaps of doped silicon clusters from core level spectroscopy

2011 
A method to determine band gaps of size-selected and isolated nanoparticles by combination of valence band and core-level photoionization spectroscopy is presented. This approach is widely applicable and provides a convenient alternative to current standard techniques for the determination of band gaps by optical or photoelectron spectroscopy. A first application to vanadium doped silicon clusters confirms a striking size-dependence of their highest occupied–lowest unoccupied molecular orbital gaps.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    25
    Citations
    NaN
    KQI
    []