Hematopoietic vs. enterocyte-derived dipeptidyl peptidase-4 differentially regulates triglyceride excursion in mice.

2020 
Post-prandial triglycerides (TGs) are elevated in people with type 2 diabetes (T2D) and glucoregulatory agents such as Glucagon-like-peptide-1 (GLP-1) receptor agonists and Dipeptidyl Peptidase-4 (DPP-4) inhibitors simultaneously reduce post-prandial TG excursion. Although the glucose-lowering mechanisms of DPP-4 have been extensively studied, how the reduction of DPP-4 activity improves lipid tolerance remains unclear. Here we demonstrate that gut-selective and systemic inhibition of DPP-4 activity reduces post-prandial TG excursion in young mice. Genetic inactivation of Dpp4 simultaneously within endothelial cells (ECs) and hematopoietic cells using Tie2-Cre reduces intestinal lipoprotein secretion under regular chow (RC) diet conditions. Bone marrow transplantation revealed a key role for hematopoietic cells in modulation of lipid responses arising from genetic reduction of DPP-4 activity. Unexpectedly, deletion of Dpp4 in enterocytes increases TG excursion in high fat diet (HFD)-fed mice. Moreover, chemical reduction of DPP-4 activity and increased levels of GLP-1 are uncoupled from triglyceride excursion in older or HFD-fed mice, yet lipid tolerance remains improved in older Dpp4-/- and Dpp4EC-/- mice. Taken together, this study defines new roles for specific DPP-4 compartments, age, and diet as modifiers of DPP-4 activity linked to control of gut lipid metabolism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    3
    Citations
    NaN
    KQI
    []