Isometric immersions of RCD spaces
2020
We prove that if an RCD space has a regular isometric immersion in a Euclidean space, then the immersion is a locally bi-Lipschitz embedding map. This result leads us to prove that if a compact non-collapsed RCD space has an isometric immersion in a Euclidean space via an eigenmap, then the eigenmap is a locally bi-Lipschitz embedding map to a sphere, which generalizes a fundamental theorem of Takahashi in submanifold theory to a non-smooth setting. Applications of these results include a topological sphere theorem and topological finiteness theorems, which are new even for closed Riemannian manifolds.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
57
References
2
Citations
NaN
KQI