Cell membrane-bound CD200 signals both via an extracellular domain and following nuclear translocation of a cytoplasmic fragment

2018 
Abstract In previous studies we had reported that the immunosuppressive cell membrane bound molecule CD200 is released from the cell following cleavage by matrix metalloproteases, with the released soluble CD200 acting as an immunosuppressant following binding to, and signaling through, its cognate receptor CD200R expressed on target cells. We now show that although the intracellular cytoplasmic tail (CD200 C-tail ) of CD200 has no consensus sites for adapter molecules which might signal the CD200 + cell directly, cleavage of the CD200 C-tail from the membrane region of CD200 by a consensus γ-secretase, leads to nuclear translocation and DNA binding (identified by chromatin immunoprecipitation followed by sequencing, Chip-sequencing) of the CD200 C-tail . Subsequently there occurs an altered expression of a limited number of genes, many of which are transcription factors (TFs) known to be associated with regulation of cell proliferation. Altered expression of these TFs was also prominent following transfection of CD200 + B cell lines and fresh patient CLL cells with a vector construct containing the CD200 C-tail . Artificial transfection of non CD200 + Hek293 cells with this CD200 C-tail construct resulted in altered expression of most of these same genes. Introduction of a siRNA for one of these TFs, POTEA, reversed CD200 C-tail regulation of altered cell proliferation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    7
    Citations
    NaN
    KQI
    []