Three-Dimensionally Ordered Macro/Mesoporous Nb2O5/Nb4N5 Heterostructure as Sulfur Host for High-Performance Lithium/Sulfur Batteries.

2021 
The severe shuttle effect of soluble polysulfides hinders the development of lithium–sulfur batteries. Herein, we develop a three-dimensionally ordered macro/mesoporous (3DOM) Nb2O5/Nb4N5 heterostructure, which combines the strong adsorption of Nb2O5 and remarkable catalysis effect of Nb4N5 by the promotion “adsorption-transformation” mechanism in sulfur reaction. Furthermore, the high electrocatalytic activity of Nb4N5 facilitates ion/mass transfer during the charge/discharge process. As a result, cells with the S-Nb2O5/Nb4N5 electrode delivered outstanding cycling stability and higher discharge capacity than its counterparts. Our work demonstrates a new routine for the multifunctional sulfur host design, which offers great potential for commercial high-performance lithium–sulfur batteries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []