Reduction-consistent Cahn–Hilliard theory based lattice Boltzmann equation method for N immiscible incompressible fluids

2021 
Abstract When some fluid components are absent from N (N ≥ 2) immiscible fluids, the reduction-consistent property should be guaranteed. In phase-field theory, the evolution of fluid–fluid interface in N immiscible fluids can be captured by a reduction-consistent Cahn–Hilliard equation (CHE), which has a variable dependent mobility. However, it is difficult for lattice Boltzmann equation (LBE) method to solve this kind of CHE with variable mobility. To eliminate this issue, in this paper, a reduction-consistent LBE is proposed for N immiscible fluids. In the model, the reduction-consistent formulation of fluid–fluid interface force is reformulated into a chemical potential form, which can be implemented by a force term in LBE, while a source term treatment is used to achieve the reduction-consistent property for CHE. Numerical simulations of spreading of a liquid lens, spinodal decomposition, and dynamic interaction of drops are carried out to validate present LBE, and the results show the accuracy and capability of present phase-field based LBE for N ( N ≥ 2 ) immiscible fluids.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []