Probing the Role of Positive Residues in the ADP/ATP Carrier from Yeast. The Effect of Six Arginine Mutations on Oxidative Phosphorylation and AAC Expression†

1996 
ADP/ATP transport is the terminal step of oxidative phosphorylation in mitochondria. In this paper seven mutants of AAC2 from Saccharomyces cerevisiae are studied on the cellular and mitochondrial level. Six conspicuously located arginines were mutated into mostly neutral residues [Nelson, D. R., Lawson, J. E., Klingenberg, M., & Douglas, M. G. (1993) J. Mol. Biol. 230, 1159−1170]. R96A, R96H, R204L, and R294A are located in the second transmembrane helix of each repeat while R252I, R253I, and R254I are in the arginine triplet of the last domain. All six arginine residues are conserved in all known ADP/ATP carrier sequences. At the cellular level, oxidative phosphorylation in R96H and R294A retains 8% of the wild-type rate, but it is virtually zero in the other mutants. However, cytochrome c, a parameter of oxidative capacity, remains at 4−42% of wt. The weak coordination of respiratory chain and AAC expression indicates that respiration is needed also for other purposes. In mitochondria the AAC-linked AT...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    60
    Citations
    NaN
    KQI
    []