Inhibition of DNAJ-HSP70 interaction improves strength in muscular dystrophy.

2020 
: Dominant mutations in the HSP70 co-chaperone DNAJB6 cause a late onset muscle disease termed limb girdle muscular dystrophy type D1 (LGMDD1), which is characterized by protein aggregation and vacuolar myopathology. Disease mutations reside within the G/F domain of DNAJB6, but the molecular mechanisms underlying dysfunction are not well understood. Using yeast, cell culture, and mouse models of LGMDD1, we found that the toxicity associated with disease-associated DNAJB6 required its interaction with HSP70, and that abrogating this interaction genetically or with small molecules was protective. In skeletal muscle, DNAJB6 localizes to the Z-disc with HSP70. Whereas HSP70 normally diffused rapidly between the Z-disc and sarcoplasm, the rate of HSP70's diffusion in LGMDD1 mouse muscle was diminished likely because it has an unusual affinity for the Z-disc and mutant DNAJB6. Treating LGMDD1 mice with a small molecule inhibitor of the DNAJ-HSP70 complex re-mobilized HSP70, improved strength and corrected myopathology. These data support a model in which LGMDD1 mutations in DNAJB6 are a gain-of-function disease that is, counter-intuitively, mediated via HSP70 binding. Thus, therapeutic approaches targeting HSP70:DNAJB6 may be effective in treating this inherited muscular dystrophy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []