Mechanism of hydrogen peroxide-induced Cu,Zn-superoxide dismutase-centered radical formation as explored by immuno-spin trapping: the role of copper- and carbonate radical anion-mediated oxidations.

2005 
Abstract We have reinvestigated the biochemistry of H 2 O 2 -induced Cu,Zn-superoxide dismutase (SOD1)-centered radicals, detecting them by immuno-spin trapping. These radicals are involved in H 2 O 2 -induced structural and functional damage to SOD1, and their mechanism of generation depends on copper and/or (bi)carbonate (i.e., CO 2 , CO 3 −2 , or HCO 3 − ). First, in the absence of DTPA and (bi)carbonate, Cu(II) was partially released and rebound at His, Cys, and Tyr residues in SOD1 with the generation of protein–copper-bound oxidants outside the SOD1 active site by reaction with excess H 2 O 2 . These species produced immuno-spin trapping-detectable SOD1-centered radicals associated with H 2 O 2 -induced active site (∼5 and ∼10 kDa fragments) and non-active site (smearing between 3 and 16 kDa) copper-dependent backbone oxidations and subsequent fragmentation of SOD1. Second, in the presence of DTPA, which inhibits H 2 O 2 -induced SOD1 non-active site fragmentation, (bi)carbonate scavenged the enzyme-bound oxidant at the SOD1 active site to produce the carbonate radical anion, CO 3 − , thus protecting against active site SOD1 fragmentation. CO 3 − diffuses and produces side chain oxidations forming DMPO-trappable radical sites outside the enzyme active site. Both mechanisms for generating immuno-spin trapping-detectable SOD1-centered radicals were susceptible to inhibition by cyanide and enhanced at high pH values. In addition, (bi)carbonate enhanced H 2 O 2 -induced SOD1 turnover as demonstrated by an enhancement in oxygen evolution and SOD1 inactivation. These results help clarify the free radical chemistry involved in the functional and structural oxidative damage to SOD1 by H 2 O 2 with the intermediacy of copper- and CO 3 − -mediated oxidations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    61
    Citations
    NaN
    KQI
    []