Biocompatible MIP-202 Zr-MOF Tunable Sorbent for Cost-Effective Decontamination of Anionic and Cationic Pollutants From Waste Solutions

2020 
This reported work aims to fabricate an eco-friendly Zr bio-based MOF and assessment its adsorption efficiency towards the cationic and anionic dye pollutants including methylene blue (MB) and direct red 81 (DR-81), respectively. Also, its adsorption tendency for the highly toxic heavy metal of hexavalent chromium (Cr(VI)) was compared with dyes. The adsorption performance of bio-MOF showed that the maximum monolayer adsorption capacities were recorded as 79.799 mg/g for MB, 36.071 mg/g for DR-81, and 19.012 mg/g for Cr(VI). Meanwhile, the optimum dosage of as-synthesized MIP-202 bio-MOF was 0.5, 1, and 2 g L-1 for MB, DR-81, and Cr(VI), respectively. Thermodynamic analysis demonstrated the spontaneous, thermodynamically, and endothermic nature of the decontamination processes onto the fabricated Zr bio-based MOF. The adsorption data were fitted by Langmuir isotherm model compared with Freundlich and Temkin models for all studied water pollutants. Pseudo-second-order kinetic model was a fit model for description of the adsorption kinetics of the different cationic and anionic pollutants onto Zr bio-based MOF. These outcomes indicated that Zr bio-based MOF has potential application for adsorption of different types of industrial water pollutants including cationic and anionic dyes and heavy metals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    4
    Citations
    NaN
    KQI
    []