A functional model for quercetin 2,4-dioxygenase: Geometric and electronic structures and reactivity of a nickel(II) flavonolate complex.

2022 
Abstract Quercetin 2,4-dioyxgenase (QueD) has been known to catalyze the oxygenative degradation of flavonoids and quercetin. Recent crystallographic study revealed a nickel ion occupies the active site as a co-factor to support O2 activation and catalysis. Herein, we report a nickel(II) flavonolate complex bearing a tridentate macrocyclic ligand, [NiII(Me3-TACN)(Fl)(NO3)](H2O) (1, Me3-TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane, Fl = 3-hydroxyflavone) as a functional model for QueD. The flavonolatonickel(II) complex was characterized by using spectrometric analysis including UV–vis spectroscopy, electrospray ionization mass spectrometer (ESI-MS), infrared spectroscopy (FT-IR) and 1H nuclear magnetic resonance spectroscopy (NMR). The single crystal X-ray structure of 1 shows two isomers with respect to the direction of a flavonolate ligand. Two isomers commonly are in the octahedral geometry with a bidentate of flavonolate and a monodentate of nitrate as well as a tridentate binding of Me3-TACN ligand. The spin state of 1 is determined to be a triplet state based on the Evans' method. Interestingly, electronic configuration of 1 from density functional theory (DFT) calculations revealed that the two singly occupied molecular orbitals (SOMOs) lie energetically lower than the highest (doubly) occupied molecular orbital (HOMO), that is so-called the SOMO-HOMO level inversion (SHI). The HOMO shows an electron density localized in the flavonolate ligand, indicating that flavonolate ligand is oxidized first rather than the nickel center. Thermal degradation of 1 resulted in the formation of benzoic acid and salicylic acid, which is attributed to the oxygenation of flavonolate of 1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    0
    Citations
    NaN
    KQI
    []